Bayesian inference provides a robust framework for combining prior knowledge with new evidence to update beliefs about uncertain quantities. In the context of statistical inverse problems, this ...
Dirichlet process (DP) priors are a popular choice for semiparametric Bayesian random effect models. The fact that the DP prior implies a non-zero mean for the random effect distribution creates an ...
Articulate the primary interpretations of probability theory and the role these interpretations play in Bayesian inference Use Bayesian inference to solve real-world statistics and data science ...
This is a preview. Log in through your library . Abstract This paper discusses Bayesian inference procedures for a normal dispersion matrix. Structural information for the prior mean of the dispersion ...
This course is available on the BSc in Actuarial Science, BSc in Actuarial Science (with a Placement Year), BSc in Data Science, BSc in Mathematics with Data Science, BSc in Mathematics with Economics ...
Mike Lee receives relevant research funding from the Australian Research Council, the Australia-Pacific Science Foundation, and Flinders University. Benedict King receives funding from the Australian ...